Optic-Flow Based Control of a 46g Quadrotor
نویسندگان
چکیده
We aim at developing autonomous miniature hovering flying robots capable of navigating in unstructured GPSdenied environments. A major challenge is the miniaturization of the embedded sensors and processors allowing such platforms to fly autonomously. In this paper, we propose a novel ego-motion estimation algorithm for hovering robots equipped with inertial and optic-flow sensors that runs in realtime on a microcontroller. Unlike many vision-based methods, this algorithm does not rely on feature tracking, structure estimation, additional distance sensors or assumptions about the environment. Key to this method is the introduction of the translational optic-flow direction constraint (TOFDC), which does not use the optic-flow scale, but only its direction to correct for inertial sensor drift during changes of direction. This solution requires comparatively much simpler electronics and sensors and works in environments of any geometries. We demonstrate the implementation of this algorithm on a miniature 46g quadrotor for closed-loop position control.
منابع مشابه
Asymptotic Vision-Based Tracking Control of the Quadrotor Aerial Vehicle
This paper proposes an image-based visual servo (IBVS) controller for the 3D translational motion of the quadrotor unmanned aerial vehicle (UAV). The main purpose of this paper is to provide asymptotic stability for vision-based tracking control of the quadrotor in the presence of uncertainty in the dynamic model of the system. The aim of the paper also includes the use of flow of image feature...
متن کاملOptic flow-based vision system for autonomous 3D localization and control of small aerial vehicles
The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for e...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملModel predictive quadrotor control: attitude, altitude and position experimental studies
This study addresses the control problem of an unmanned quadrotor in an indoor environment where there is lack of absolute localisation data. Based on an attached inertia measurement unit, a sonar and an optic-flow sensor, the state vector is estimated using sensor fusion algorithms. A novel switching model predictive controller is designed in order to achieve precise trajectory control, under ...
متن کاملRobust Control of a Quadrotor in the Presence of Actuators' Failure
Today, robots and unmanned aerial vehicles are being used extensively in modern societies. Due to a wide range of applications, it has attracted much attention among scientists over the past decades. This paper deals with the problem of the stability of a four-rotor flying robot called quadrotor, which is an under-actuated system, in the presence of operator or sensor failures. The dynamica...
متن کامل